Acoustic Climber for Space Elevator

Most of this page is obsolete and needs reworking. The semi-final paper I submitted is here.

The current reference space elevator design assumes solar-powered climbers. This assumes that vast areas of solar panels can cantilever from the sides of a climber - in gravity - and provide megawatts of climb power, while being lightweight and affordable.

SolarSail-DLR-ESA.jpg

This is a solar SAIL, not a solar cell!

bigger from here and here and here.

Instead, a superstrong tether can carry megawatts of 1 to 10 Hz range acoustic power, which can be impedance-matched and mechanically rectified (mad handwaving here) to produce climber thrust. The acoustic transmitters on the ground and at GEO node can provide 2 MW and 10 MW of climb power respectively, more by trading off climber mass, gravitational weight, and climber speed.

There will be two groups of motors for a climber, separated by 1/4 wavelength of acoustic vibration. The upper group will extract power from the vibration, launching electrical power and tension down to the lower group, which will reflect the vibrations back towards the top. The net effect will be like a quarter-wave radio antenna.


Analogy Between an Electronic Signal Cable and a Stiff Tether

All units MKS: meters, kilograms, seconds, volts, amperes (amps), radians

( FYI: if you don't think radians are a unit, you are turned around, and can't distinguish energy from torque. :-? )

WORK IN PROGRESS, not correct yet:

Electrical

Acoustic

Distance ( meters, m )

Time ( seconds, s )

Lumped parameters

Energy (Joules, J)

½·C·V² + ½·L·I²

Energy (Joules)

½·kg·m²/s² = N·m

Power (Watts, W)

V·A

Power (Watts)

kg·m²/s³ = N·m/s

Current I (Amps, A)

mks fundamental unit

Displacement Velocity v

m/s

Voltage V (Volts, V)

kg·m²/A·s³

Force F (Newtons, N)

kg·m/s²

Impedance R, Z ( Ohms, Ω )

R = V/A = kg·m²/A²·s³

Acoustic Impedance Z

kg/s

Inductance L (Henries, H )

L = Ω·s = kg⋅m²/A²·s²

mass m (kilograms, kg)

m

Capacitance C (Farad, F)

C = s/Ω = s⁴⋅A²/m²·kg

compliance (1/spring)

m/N = s²/kg

Distributed parameters; X' ≡ linear derivative of X ≡ X per meter ; <X> ≡ average of X sin( ω T )

Energy/Length <J'>

¼·C'·V²/m + ¼·L'·I²

Energy/Length <J'>

¼·kg·m/s² = N

Power/Length <W'>

V·A/m

Power/Length <W'>

kg·m/s³ = N/s

Current I (Amps, A)

mks fundamental unit

Displacement Velocity v

m/s

Voltage/Length V'

kg·m/A·s³

Force F (Newtons, N)

kg·m/s²

Impedance R, Z ( Ohms, Ω )

R = V/A = kg·m²/A²·s³

Acoustic Impedance Z

kg/s

Inductance/Length

L' = kg⋅m²/A²·s²

mass/Length m'

kg/m

Capacitance/Length

C' = s/Ω⋅m = s⁴⋅A²/m³·kg

compliance (1/spring)

m/N = s²/kg


Electrical cable

Relationship between voltage and current in a uniform lossless electronic signal cable:

~~~~~~~~ { \Large {{ \partial V(x,t) } \over { \partial x }} } = - L { \Large { {\partial I(x,t) } \over { \partial t }} } ~~~~~~~~~~~ { \Large {{ \partial I(x,t) } \over { \partial x }} } = - C { \Large {{ \partial V(x,t) } \over { \partial t }} }

Wave equations for a uniform lossless electronic signal cable:

~~~ L C ~ { \Large {{ \partial^2 I(x,t) } \over { \partial t^2 }} } ~=~ { \Large {{ \partial^2 I(x,t) } \over { \partial x^2 }} } ~~~~~ L C ~ { \Large {{ \partial^2 V(x,t) } \over { \partial t^2 }} } ~=~ { \Large {{ \partial^2 V(x,t) } \over { \partial x^2 }}}

Sinusoidal solutions (many others are possible): ~~~I(x,t) = I_0 \sin( \omega t + k x ) amps ~~~~~ V(x,t) = V_0 \sin( \omega t + k x ) volts


Mechanical cable

Relationship between displacement, velocity, acceleration, tension, and strain in a mechanical cable:

~~~~~~~~ { \large \epsilon(x,t) = \Large {{ \partial \psi(x,t) } \over { \partial x }} }

~~~~~~~~ { \large f(x,t) = Y_c \Large { { \partial \epsilon(x,t) } \over { \partial x }} }~=~{ Y_c \Large {{ \partial^2 \psi(x,t) } \over { \partial x^2 }} }

~~~~~~~~ { \large v(x,t) = \Large {{ \partial \psi(x,t) } \over { \partial t }} }

~~~~~~~~ { \large a(x,t) = \Large {{ \partial^2 \psi(x,t) } \over { \partial t^2 }} }~=~{\LARGE{ 1 \over \rho_c }}~{\large f(x,t)} ~=~ { \Large { Y_c \over \rho_c } ~ {{ \partial^2 \psi(x,t) } \over { \partial x^2 }} }

Wave equations for a uniform lossless mechanical cable:

displacement: ~~{\Large{{\partial^2 \Psi(x,t)}\over{\partial t^2}} } = {\Large{Y_c \over \rho_c }~{{\partial^2 \Psi(x,t)}\over{\partial x^2 }} }~~~~ velocity: ~~{\Large{{\partial^2 v(x,t)}\over{\partial t^2}} } = {\Large{Y_c \over \rho_c}~{{\partial^2 v(x,t)}\over{ \partial x^2}} }~~~~ strain: ~~{\Large{{\partial^2 \epsilon(x,t)}\over{\partial t^2}} } = {\Large{Y_c \over \rho_c}~{{\partial^2 e(x,t)}\over{\partial x^2}} }

For sinusoidal waves,

MoreLater, check the sign on \epsilon


AcousticClimber (last edited 2017-10-05 03:46:10 by KeithLofstrom)